

Journal of Environmental Sciences

JOESE 5 ISSN 2090-9233

Original Article

Monitoring of Water Pollution and Eutrophication Using Phytoplankton as Bio-indicator in Burullus Lake, Egypt

Abdel-Aziz M. Radwan*, Fathy T. Tayel, Amal M.H. Morsy, Mahmoud A. Abdelmoneim, and Afifi I. Basiony

Marine Pollution Department, National Institute of Oceanography and Fisheries, Alexandria, Egypt

Article Info	Abstract
Article history: Received 27/3/2018 Received in revised form 3/5/2018 Accepted 7/5/2018	Lake Burullus face tremendous ecological stresses due to rising of pollution originated from the discharges of the drains without treatment; eight stations were monitored in order to assess the eutrophication and the pollution levels at these stations using some species of phytoplankton as bio-indicator to the pollution. An average density of 1.406000 units 1-1 phytoplankton belonging to four divisions namely; <i>Euglenophyceae</i> , <i>Bacillariophceae</i> ,
Keywords:	Chlorophyceae and Cyanophyceae were identified.
Burullus Lake	The most abundant genera at these stations were Euglena spp. and Phacus spp.
Phytoplankton	(euglenords), Scenedesmus spp. (chlorophytes), Cyelotella spp. and Nitzschia sp.
Bio-indicator	(Bacillariophyceae), while the genera of Merismopedia spp. and Microcystis spp. were the
Freshwater	most dominant among cyanophytes (blue-green algae). These genera were the most
Pollution	dominant at the stations near to the drains which affected by the discharges originated from
Eutrophication	the drains (organic pollution) as well as the high levels of nutrient salts especially ammonia nitrogen (eutophication). The members of euglenoids were the most indicators to the pollution at station 2, 3 and 7 near to the drains.

1. Introduction

Lake Burullus belong administratively to Kafr El-Sheikh province. It lies in a central position between two branches of the Nile along Mediterranean coast in the north part of Nile Delta connecting with the sea through Boughaz El-Burullus opening.

From the new records after the cleaning process at the eastern part of the lake at Baltim City, the lake has a total area 453 Km². The length of the lake from Boughaz El-Burullus till Brimbal cannal in the extremely western side of the lake (47 km), on the other hand, the width of the lake varies from site to other. The western sector has the least width not exceed 5km, while the eastern and middle sectors were 14 and 11 km respectively. The depth in the lake increase gradually from the east (20 cm) to middle and western sector about 70 to 120 cm respectively.

Many authors studied the using of phytoplankton species as indicator to the water quality and pollution as well as the eutrophication, such as Reynolds (1984a), Rynolds (1997), Moss (1998), Straskraba and Tundisi (1999), Reynolds and Peterson (2000), Reynolds *et al.* (2002), Brettum and Adersen (2005), Radwan (2007) studies the impact of pollution on the phytoplankton community in lake Burullus and Amphorn and Wanninnee (2012).

Further, other studies reported the distribution pattern of phytoplankton with respect to the degree of water pollution such as chaudhary of Pillai, 2009; Singh & Balasingh 2011; Ghosh *et al.*, 2012 and Maske *et al.*, 2010. The aim of the present work is to study the qualitative and quantitative of phytoplankton community in Lake Burullus as well as the using of some species as indicators to the pollution at the different localities of the lake.

2. Material and Methods

2.1. Sampling localities and stations

Eight stations were chosen as Table (1) and Figure (1) representing the whole area of the lake stations 1, 2 and 3 from the eastern sector, while stations 4-7 from the middle sector and station 8 from the western sector Figure (1). The selected sampling stations presented in Table 1 was recorded by GPS.

 $*Correspondence\ author:$

Tel.:01227523265

E-mail address: radwanvet47@gmai.com

Subsurface water samples (20 cm depth) were taken from each station at the same time for chemical and phytoplankton analyses. The chemical variables (Dissolved oxygen, salinity and pH were determined according to APHA (1989). Nutrient salts were analyzed according to Grasshoff *et al.* (1999).

The identification of phytoplankton species was carried out using a binocular research microscope model XSZ –10BN Germany – No. 009707. Sedimentation technique used for the qualitative and quantitative analysis of phytoplankton. The cell count of hemocytometer used for counting the phytoplankton species according to Prescott (1978), Bold and Wynne (1978) and Vinard (1979). Where; One drop from the concentrated sample of phytoplankton on the groove of the hemocytometer chamber, allow the concentrated sample to flow under the cover glass then allow the cells settle for about

3 minutes, the count of phytoplankton species were carried out in four large squares as the following:

The depth of the counting chamber is 0.1 mm and the area counted is 4 square mm (4 squares are counted, each with an area of one square mm therefore, 4x1.0 sq mm = a total of 4 sq mm). The volume counted is: area x depth = volume 4 sq mm x 0.1 =0.4cu mm.

Number of species per liter = number of species counted as an average 4 sq x conc factor x1000/0.4

2.2. Statistical analysis

The relationship and correlation coefficient between some hydro-chemical parameters and the total count of phytoplankton were carried out using statistical SPSS program.

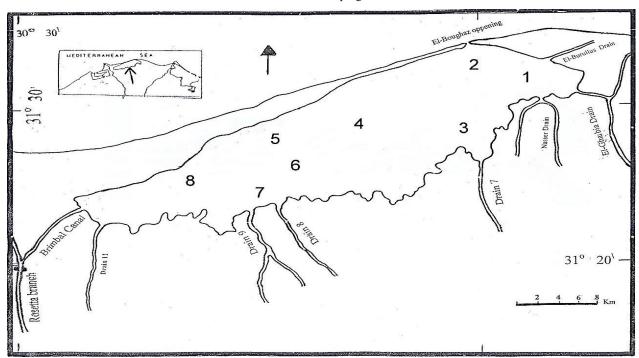


Fig. 1. Map showing sampling stations in Lake Burullus

Table 1: Latitude and Longitude of sampling stations of Lake Burullus

St. No	Station	Latitude (N)	Longitude (E)
1	Infront of El-Burullus Drain	31° 33` 29.9``	30° 04` 25.3``
2	El-Boughaz (outlet)	31° 34` 27.6``	30° 29` 28.4``
3	Drain 7	31° 27` 26.1``	30° 56` 17.5``
4	El-Zankah	31° 27` 53.3``	30° 47` 10.0``
5	Mastaroh	31° 29` 09.0``	30° 45` 24.4``
6	El-Tawillah	31° 26` 50.2``	30° 46` 10.0``
7	El-Shakhloubah (Drain 8&9)	31° 24` 46.9``	30° 45` 54.9``
8	Abou-Amer	31° 24` 17.5 ``	30° 30` 01.9``

3. Results and Discussion

Many authors discussed the distribution and relations of phytoplankton with some factors like lake temperature, pH, Transparency, sun light and nutrient enrichment. They noticed that each lake habitat is different from other lake habitat and concluded that phytoplankton is a bio-indicator for impacts of influencing factors. Phytoplankton aid in monitoring and assessing the strategies of the freshwater lake management (Manisha *et al.*, 2013).

The phytoplankton has been long used as an effective water bio-indicator that is sensitive to environmental changes. Some species thrive in highly eutrophic waters, where some species are very sensitive to environmental changes (Amphon and Wanninee, 2013).

The detailed study of phytoplankton at the different stations of Lake Burullus water revealed that, the diversity and flourishment of phytoplankton was affected mainly by the nutrient conditions of water as well as the different sources of pollution from the discharges originated from the drains (Radwan, 2007).

In our investigation, the phytoplankton community at the stations of Lake Burullus was more productive due to the pronounced increase of some species and classes at some stations near to the drains as shown in Table 2 which indicate the dominance and flourishment of class *Euglenophyceae* at station 7 recording about $(1.145 \times 10^3 \text{ cell l}^{-1})$; in the middle sector of the lake in front of drain 8 & 9 followed by class *Bacillariophyceae* $(1\times10^6 \text{ cell l}^{-1})$ at the same station, also the observation was recorded at station 3 in front of drain 7 in the eastern sector where the class *Euglenophyceae* was the most dominant recording about $(960 \times 10^3 \text{ cell l}^{-1})$ due to the high load of discharges from the drain related to the high level of ammonia nitrogen (Table 3).

In this context, the *euglenoids* were the main component and most abundant among the standing crop of phytoplankton at the stations near to the drains. This attributed to the heavy load of organic matters discharged from the drains which lead to the flourish of the members belonging to this class, with taken in our consideration that this class not detected at the station further away from the drains.

The members of this class represented by eight species namely; *Phacus longicauda*, *P. Macrostigma*, *P. Sestosa*, *P. Pleuronectes*, *Euglena acus*, *E. promxia*, *E. grcilis and E. granulate*. The flourish of these species was dependent mainly upon the load of organic pollution originated from the drains in addition to the concentration of nutrients salts especially the high level of ammonia (eutrophication).

Many studies cleared that the occurrence and flourish of *Euglena* was due to the organic pollution (Abdallah *et al.*, 1991), Kimor, (1992) reported that the nutrients enrichment from sewage tends to stimulate the development of algal blooms especially microflagellate mainly euglenoids and coccoid forms, other study was carried out by Amphon and Wannine (2013) who reported that the rivers and lakes with stagnant and weak water currents always contain Euglenophyta such as *Euglena* spp. and *Phacus* spp. *Egulena* are indicator to eutrophic waters and organic pollution.

Concerning, the distribution of chlorophytes members at the different stations, it's obvious that class Chlorophyceae was the most abundant at station 7 in front of drain 8 & 9 which characterized by heavy load of organic matters originated from the drains (sewage and fish farms effluents) recording about (930 x 103 unit 1-1). The species of Scendesmus quadricauda was more productive among the chlorophytes members at this station influenced mainly by the organic matter discharged, in addition to the low level of salinity which enhance the flourish of *Scenedesmus* spp. this observation agree with Walsh and Merrill (1984) who, reported that the effect of sewage upon the algal blooms due to the organic pollutions especially Scenedesmus spp., Ankistrodesmus sp. and Cosmarium sp. as shown at station 1 in front of El-Burullus drain which characterized by the high load of organic discharges. This observation coincided with Radwan (1994), who reported that the flourish of Scenedesmus were due to the organic pollution.

The distribution of Bacillariophyceae species at the different stations indicated that, the dominant genera of diatoms frequently recorded in the lake were Cyclotella spp., Nitzchia spp. and Cocconeis sp., while the other genera persisted as infrequent. The genus of Cyclotella spp. was the most dominant at station 7 constituting about 46% of the total bacillarophytes at this station (Table 2), since this station was affected by the discharges of drain 8 & 9 with heavy load of organic pollution. The genus Cyclotella spp. was represented by two species namely; C. meneghiniana and C. Kutzingiana recording about 260 x 10³ and 200 x 10³ cell l⁻¹ respectively, while the genus of Nitzschia spp. formed about 31% of the bacillariophytes at the same station represented by two species namely; N. longissima and N. abtusa recording about 180 x 10³ and 130 x 10³ cell l⁻¹ respectively. The same observations were coincided with Sabatar and Sabater (1988) who reported that, the genus cyclotella spp. can tolerate different pollution conditions, Abdallah et al. (1991) found that the species of cyclotella and Nitzschia developed with the increase of organic load, other observation was recorded by Abdel Hamid (1986) who found that, the distribution of these genera was influenced by the load of organic matter. In general, the diatoms recorded the highest count at this station due to the high load of discharges from the drains and this agree with Mukherjee et al. (2010) who noticed that, the blooms of diatoms occurred in Ranchi lake were due to the organic matter with high concentrations in November month.

From the check list in Appendix, the members of Cyanophyceae were the most diversity especially at stations near to the point of discharges originated from the drains (St. 7) infornt of drain 8 & 9, also the blue green algae were recorded the highest count (456.000 unit 1-1) which decreased gradually with further away from the drains (Table 2& Figure 2). The genera of Merismopedia spp., Chrococcus spp., Microcystis spp. and Oscillatoria sp. were the most productive and important genera among the cyanophytes especially in front of the drains which characterized by heavy load of organic pollution from the discharges (sewage and fish farms). These observations were supported by Radwan (1994) who mentioned that, the flourish of cyanophytes were influenced mainly by the organic pollution and temperature in addition to the high load of nutrient salts (eutrophications). Other investigators noticed that, the maximum distribution of cyanophytes were correlated with domestic sewage (Saad and Antoine, 1983), Wang and Zhang (1993) reported that, in Summer, Autumn and Winter the dominant species of bluegreen algal especially *Microcystis* spp. indicated that the lake under study suffered from pollution and can be regarded as a blue-green algae-eutrophic lake, the study of Rodrigues *et al.* (1995) revealed that, with the increasing supply of nutrients contributed to an increasing eutrophication and the blue-green algae dominated in Fumas Lake.

The results obtained from the statistical analysis as shown in Table (4) were indicated that, a highly significant positive correlation was found between ammonia & nitrate and phosphate & nitrate (r=0.89 and r=0.72 respectively). This indicate that, the nutrient salts in the lake represent the most effective on the flourishment of phytoplankton especially infront of the drains this observation is agreeing with Nassar

(2007) who reported that, the relation between the nutrient salts (ammonia, Nitrate and Phosphate) was significant positive correlation, while the relation was inverse correlation between the dissolved oxygen and the total count of phytoplankton (r= -0.36). This is may be due to the high amounts of organic matters which decomposed by the bacterial activities leading to the consumption of oxygen at the same time flourishment of phytoplankton occur due to the enrichment of nutrient salts originated from the discharges of the drains. The water temperature exhibited insignificant correlation (r= 0.41). This coincided with those obtained by Behrendt (1990) who noticed that the effect of temperature variations on phytoplankton mostly manifested on periodicity and community's succession of algae but not necessary on the total count.

Table 2: Average numbers of the different phytoplankton classes (units or cells $1^{-1} \times 10^{3}$) recorded in the different stations

			Class		
St. No.	Euglenophyceae	Chlorophyceae	Bacillariophyceae	Cyanophyceae	Total
	Cell l ⁻¹	Unit l ⁻¹	Cell l ⁻¹	Unit l ⁻¹	Unit l ⁻¹
1	284	250	125	130	789
2	-	70	275	295	640
3	960	450	125	275	1.810
4	-	155	120	155	430
5	375	900	135	215	1.625
6	rare	860	110	115	1.085
7	1145	930	1000	456	3.531
8	-	810	150	378	1.338
Average	346	553	255	252	1.406
Percent.	25	39	18	18	100%

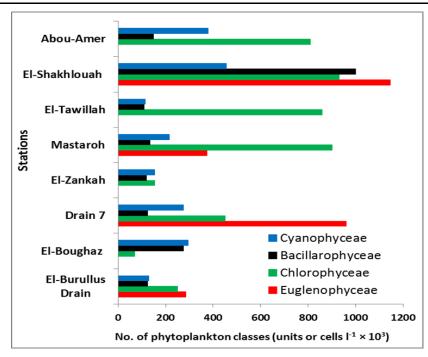


Fig. 2. Distribution of phytoplankton classes within different stations

Table 3: Physio-chemical parameters of water samples at the different stations of Lake Burullus

		Eastern Sector Middle Sector								Western sector
Param	ieters	1	2	3	4	5	6	7	8	
Too	С	19.2	18.9	19.8	19.5	21.5	21.4	20.5	20.2	
EC m	s/cm	31.8	63.3	9.11	10.17	9.29	8.61	4.52	9.00	
pН	I	9.07	8.89	9.06	9.01	9.18	8.96	8.87	8.99	
Trans.		20	20	10	10	20	20	20	20	
Depth	cm	100	60	70	80	120	100	120	120	
NH ₃		123	69	96	119	60	288	79	96	
PO ₄		40.74	13.17	36.75	50.23	75.34	197.24	56.97	54.21	
NO ₃	μg/ l	178.73	52.4	71.36	139.27	246.7	395.98	281.44	325.23	
NO_2		125.44	20.02	30.03	38.16	33.16	71.95	194.25	62.56	
SiO ₄		1907.5	2849	3097.5	3101	2383.5	2894.5	2940	2177	
DO		10.8	8.5	9.7	12.9	13.1	13.8	8.7	8.7	
OM	mg/l	18	6	4	2	18	10	10	2	

Trans: Transparency, EC: Electrical conductivity, DO: dissolved oxygen, OM: organic matter.

Table 4: Pearson-moment correlation (r) between different studied variables. EC: Electrical conductivity, Trans: Transparency, DO: dissolved Oxygen, OM: Organic Matter, T_Count: Total count

Variable	EC	pН	Trans	NH_3	PO ₄	NO ₃	NO_2	SiO ₄	DO	OM	T°C	T_Count
EC	1.00											
рН	-0.28	1.00										
Trans	0.27	-0.19	1.00									
NH ₃	-0.23	-0.15	0.07	1.00								
PO ₄	-0.44	0.00	0.24	0.89**	1.00							
NO_3	-0.58	-0.06	0.54	0.56	0.72*	1.00						
NO_2	-0.26	-0.38	0.39	0.05	0.08	0.41	1.00					
SiO ₄	-0.13	-0.42	-0.59	0.15	0.12	-0.26	-0.18	1.00				
DO	-0.36	0.51	-0.15	0.57	0.67	0.33	-0.25	0.07	1.00			
OM	0.06	0.46	0.55	0.02	0.19	0.21	0.34	-0.54	0.34	1.00		
T°C	-0.67	0.28	0.30	0.37	0.75*	0.77*	0.10	0.01	0.53	0.34	1.00	
T_Count	-0.48	-0.25	0.21	-0.24	0.01	0.32	0.69	0.16	-0.36	0.14	0.41	1.00

st Correlation is significant at the 0.05 level (2-tailed).

^{**} Correlation is significant at the 0.01 level (2-tailed).

References

- Abdel-Hamid, M.I. (1986): Ecological studies on algal pollution of Damietta branch and the possibility of their use as water pollution indicator M.Sc. Thesis, Botany Department, Mansoura University, 260 pp.
- Amphorn, S. and Wanminee (2012): phytoplankton as Bioindicator of water quality in the freshwater Area of Pak Phanang River Basin (Southern Thailand). *Chiang Mai Journal of Science*, 40(3):344-355.
- APHA (1989). Standard methods for the examination of water and wast water 17th Ed. New York, 626p.
- Behrendt, H. (1990): The chemical composition of phytoplankton and zooplankton in trophic shallow lakes. *Arch. Hydrobiology*, 118 (2): 129-145.
- Brettum P and Adreson, T. (2005): The use of phytoplankton as indicators of water quality. NIVA. Report SNO 4818-2004.
- Bold, H.C, and Wynne, M.J. (1978): Introduction to the algae structure and reproduction prentice – Hall, Inc. Englwood Cliffs, New Jersy 07632.
- Chaudhary, R., Pillai; 2009. Algae biodiversity and related physic-chemical parameters in Sashamcottah lake, Kerala (India). *Journal of Environmental Research and Development*, 3:3.
- Ghosh, S., Barinova, S., Keshri, J.P.; 2012. Diversity and seasonal variation of phytoplankton community in the Santragachi Lake, West Bengal, India. Oscience Connect.3.
- Grasshoff, K.; Kremling, K. and Ehrhardt, M., 1999. Methods of Sea water analysis, 3rd edition, Weinheim, New York, Wiley-VCH, p.600.
- Kimor, B. (1992): The impact of eutrophication on phytoplankton composition in coastal marine ecosystems. In marine coastal eutrophication (Vollen weider, R.A., et al., eds.) pp. 871-818 (Marine).
- Manisha, D. Giripunje; AbhAY, B. Fulke; Krisna Khairnar, P.U. Meshram; Waman N. Paunikar, (2013): A review of phytoplankton ecology in freshwater lakes of India. Council of science and Industrial Research-National Environmental Engineering Research institute, India. Lakes, reservoir and ponds, 7(2): 127-141.
- Maske,S., Sangolkar L.N., Chakrabarti.; 2010. Temporal variation in density and dirersity of cyanobacteria and cyanotoxins in lake at Nagpur (Maharashtra State), India. Environmental monitoring and assessment, 169:299-308.
- Moss, B. (1998): Ecology of Freshwaters Man and A medium past to Future 3^{ed} edition. Blackwell science Ltd.
- Mukherjee, B., Nivedita, M. Mukherjee D., (2010): Plankton diversity and dynamics in a polluted eutrophic lake, Ranchi. *Journal of Environmental Biology*, 31: 827-839.

- Nassar, M.Z. (2007): Nutrients and phytoplankton distribution in the coastal waters of Aqaba Gulf, Red Sea, Egypt. Egyptian Journal of Aquatic Research, 33 (2): 133-151.
- Prescott, G.W. (1978): How to know fresh water algae W.M.C. Brown Co. Dubque . Iowa. USA.
- Radwan A.M. (2007). Impact of pollution on the primary production of phytoplankton in Lake Burullus. *African Journal of Biological Sciences*, 3(1):35-49.
- Radwan, A.M., (1994): Study on the pollution of Damietta branch and its effects on the phytoplankton Ph.D. Thesis, Botany Department, faculty of Science, Tanta University, 289 pp.
- Reynold, C., Huszar, V., Kruk C., Naselli-Flores L., and Melos (2002): Towards a functional classi fication of the fresh phytoplankton. *Journal of plankton. Research*, 24: 417-428.
- Reynolds C.S. (1984a) The ecology of inland waters and esturaries Reinhold Pudl. Corp., N.Y.375.
- Reynolds C.S. and Peterson A.C. (2000): The distribution of planktonic Cyanobacteria in Irish Lakes in relation to their trophic states. *Hydrobiologia*, 424: 91-99.
- Reynolds, C.S. (1997): Vegetation processes in the pelagic. Amodel for ecosystem theory. In: Kinne O. (ed.). Excellence in ecology. Ecology Institute. Oldender / Luhe. Germany, pp 1-371.
- Rodrigues, A.M.F., Santos, M.C.R. Santana, F.J.P. & Sobral, P. (1995): Phytoplankton and eutrophication of Fumas Lake (S.Miguel islands, Azores) F. (Freshwater).
- Sabater, S. and Sabater (1988): Diatoms assemblages in the River Ter. Arch. Hydrobiol. 111 (3): 397-408.
- Samaan, A.A. and Ghobrial, M.G., (1991): Eutrophication in Lake Maruit. *Bulletin National Institute of Oceanography and Fisheries*, 17 (1): 157-166.
- Simgh, R.P., Balasingh, G.S.; 2011. Limnological studies of Kodaikanal Lake (Dindgal District), in Special Referance to phytoplankton.
- Straskraba, M. and Tundisi, J.G.(1999): Reservoir water Quality Management. Guidelmes of Lake Management. Vol. 9. Int. Lake Environ. Committee (ILEC) Shiga. Jaoan.
- Vinyard , W.C. (1979) : Diatoms of North America Textbook.New York , Third edition 293pp .
- Walsh, G.E. and Merrill, R.G. (1984): Algal Bioassays of Industrial and Energy Process Effluents In: Algae as Ecological indicators ed. L, Elliot Shubert. Academic Press. London pp. 434.
- Wang, Li, B. & Zhang, L. (1993): An evaluating of water pollution and eutrophication in the Dalaihu Lake using phytoplankton communities. Acta Hydrobiol. Sin. Shuisheng Shenggu xue bao, 17, 27-34F (Fresh water).

Appendix: Check list of phytoplankton species identified and counted at the selected stations in Lake Burullus.

Phytoplankton species	No. of cells l ⁻¹
Station 1 (El-Burullus east dra	ain)
Euglenophyceae	
Euglena acus Her.	80.000
E. graculis K1bs	50.000
Phacus longicawda (Her) Dujadin	60.000
Ph. Sestosa	54.000
Ph. Macrostigma	40.000
Total count Euglenophyceae	284.000
Chlorophyceae	
Scenedesmas qudricauda	40.000
S. acuminatus	20.000
Ankistrodesmus falcatus	60.000
Cosmarium galeatum	45.000
Chlorella vulgaris	40.000
Scenedesmas bijugatus	20.000
OOCystis borgi	25.000
Total count of Chlorophyceae	250.000
Cyanophyceae	
Oscillatoria limnetica Lemm	65.000
Merismopedia punctata Meyen	35.000
Chroococcus limneticus	30.000
Total count of Cyanophyceae	130.000
- Bacillariophyceae	
Cocconeis placentula Her.	45.000
Nitzschia longissima (Breb) Ralfs	20.000
Cyclotella kutzingiana thwait	60.000
Total count of Bacillariophyceae	125.000
Total count (TC) of phy. at station 1	789.000

Station 2 (In front El-Boughaz (outlet)			
Euglenophyceae	Not detected		
Chlorophyceae	•		
Scenedesmus bijugatus (Turp.) Kutz	45.000		
Chlorore;;a vulgaris lenuissima lemm.	25.000		
Total count of chlorophyceae	70.000		
Bacillariophyceae			
Navicula grcillis Breb	35.000		
Navicula humerosa Breb	45.000		
Navicula cryptocephala kutz	30.000		
Navicula schizonmenoids H.van H.	60.000		
Synedra ulna Her	20.000		
Cyclotella kutzingiana Thwaites	75.000		
Dialoma hiemale	10.000		
Total count of Bacillariophyceae	275.000		
Cyanophyceae			
Chroococcus dispersus (keissl.) lemmer	25.000		
Microcystis incerta lemmerman	50.000		
Gloecapsa rupestris kuetzing	70.000		
Chroococcus turgidus (kutz)	35.000		
Chroococcus limneticus lemmermann	80.000		
Merismopedia tenuissima	35.000		
Total count of Cyanophyceae	295.000		
Total count of phy. at st. (2)	640.000 units 1 ⁻¹		

Station 3 (In front of Drain 7	7
Euglenophyceae Euglena acus Ehrenberg	230.000
E. gracilis klebs	150.000
E. gracuis kiebs E.granulata lemm	50.000
E. promxia dangeard	70.000
	160.000
Phacus macrostigma pachmann Ph. Peuronectus (Muell) Dujardin	60.000
Ph. Sestosa	80.000
Ph. Longicauda (Her.) Dujardin	160.000
Fotal count of Euglenophyceae	960.000
	900.000
Chlorophyceae Scenedesmus a cuminatus (Lagerh) chodat	130.000
Scenedesmus a cuminatus (Lagern) cnoaat Scenedesmus quatricauda (Turp) Breb	150.000
	110.000
Scenedesmus bijugatus (turp) kutz	
Ankistrodesmus falactus var. acicularis	20.000
Cosmarium galeatum W. G.S. west	5.000
Chlorella vulgaris Beij	9.000
Chlorococcum humicola (Nag.)	25.000
Coelastrum sp.	1.000
Total count of Chlorophyceae	450.000
Cyanophyceae	00.000
Merismopedia elegans (Braum)	80.000
Merismopedia glauca (Ehrenb) Nagelei	60.000
Merismopedia minima Beck	40.000
Microcystis incerta Lemm.	60.000
Spirolena sp.	5.000
Microcystis aerioginosa kutz: emend Elenkin	30.000
Total count of Cyanophyceae	275.000
Bacillariophyceae	
Cyclotella meneghiniana	40.000
Nitzschia longissimi	50.000
Cocconeis placentuta Navicula viridula	29.000 6.000
Fotal count of Bacillariophyceae	125.000
Total count of phy. at st. (3)	1.810.000 units l-1
Station 4 (El-Zankah)	
Chlorophyceae	
Scenedesmus quadricauda (Turp) Breb	80.000
Chlorella vulgaris Beij Scenedesmus dimorphus (Turpin) kutz	30.000 20.000
Scenedesmus aimorpnus (Turpin) kutz Scenedesmus bijugatus (turp) kutz	15.000
Pediastrum boryanum (turp) Menegh	10.000
Total count of Chlorophyceae	155.000
Bacillariophyceae	•
Cocconeis placentula Her.	90.000
Cycloella meneghiniana kutz	30.000
Total count of Bacillariophyceae Cyanophyceae	120 .000
Cyanopnyceae Merismophedia punctata Meyen	50.000
Merismophedia tenuissima Lemm	65.000
Microcystis aerioginosa kutz. Emeno	40.000
Total count of Cyanophyceae	155.000
Euglenophyceae	Not detected
Total count of phyt. at st. 4	430.000

Station 5 (Mastrouh) Chlorophyceae	
Scenedesmus quadricauda (Turp.) Breb	200.000
Scenedesmus bijugatus (Turp.) Kuetz	160.000
Scenedesmus bijugatus var altermans Hansg	110.000
Scenedesmus dimorphus (Turpin) kutz	95.000
Sphaerocystis schroeteri	80.000
Botryococcus braunii	110.000
Pediastrum duplex Meyen	60.000
Chlorella vulgaris Beij	35.000
Chlorococcum humicola (Nag)	50.000
Total count of Chlorophyceae	900.000
Euglenophyceae	
Euglena acus Ehrenberg	75.000
Euglena promxia Dangeard	80.000
Phacus longicauda	130.000
Phacus macrostigma Pachmann	90.000
Total count of Euglenophyceae	375.000
Bacillariophyceae	·
Cocconeis placentula Ehrenberg	70.000
Cyclotella meneghiniana kutz	20.000
Nitzschia lonissima (Breb) Ralfs	45.000
Total count of Bacillariophyceae	135.000
Cyanophceae	155.000
Microcystis ineerta Lemm	50.000
Merismopedia temuissima Lemm	65.000
Merismopedia punctata Meyen	40.000
Chrococcus disperses (Keissl.) Lemm.	60.000
Total count of Cyanophceae Total count of phyt. at st. (5)	215.000 1.625.000
Total count of phyt. at st. (3)	1.023.000
Station 6 (El-Tawillah)	
Chlorophyceae	
Scenedesmus quadricauda	240.000
Scenedesmus dimorphus	200.000
Scenedesmus bijugatus (Turp.) Kuetz	160.000
Scenedesmus bijugatus var altermans Hansg	90.000
Pediastrum boryanum	50.000
Cosmarium galeatum	30.000
Ankistrodesmus falcatus var. acicularis	45.000
Chlorella sp.	45.000
Total count of Chlorophyceae	860.000
Bacillariophyceae	
Cocconeis placenlua	70.000
Cyclolella kutzingiana	20.000
Nitzschia longissima	20.000
Total count of Bacillariophyceae	110.000
Cyanophceae	
Merismopdia elegans	30.000
Merismopdia minima	25.000
Merismopdia enuissima	40.000
Chroococcus limneticub	20.000
Total count of Cyanophceae	115.000
Euglenophyceae	
Phacus pleuronectes	
1 nacus pieuronecies	

Station 7 (El-Shakhloubah)	
Euglenophyceae	260,000
Phacus longicauda +++	360.000
Phacus macrostigma ++ pachmann	120.000
Phacus sestosa ++	160.000
Phacus pleuronectes +	60.000
Euglena acus Ehrenberg	210.000
Euglena promxia Dangeard	110.000
Euglena gracilis klebs	60.000
Euglena granulate Lemm	65.000
Total count of Euglenophyceae	1.145.000
Bacillariophyceae	
Cyclotella meneghiniana kutzing	260.000
Cycelotella kutzingiana thwaites	200.000
Cocconeis placenlula Ehrenberg	140.000
Nitzschia longissima (Breb) Ralfs	180.000
Nitzschia obtusa W. smith	130.000
Nitzschia palea (kutzing) W. smith	90.000
Total count of Bacillariophyceae	1.000.000
Chlorophyceae	
Scenedesmus quadricauda (1) (Turp) Breb	20.000
Scendesmus acumninatus (Lagerh) chodat	120.000
Scenedesmus bijugatus (Turp) kuetz	85.000
Ankistrodesmus falactus var spirilligormis	70.000
Botryococcus braunii kuetzing	75.000
Scenedesmus bijugatus var alternans Hansg	110.000
Pediastrum boryanum (Turp.) Meneghini	50.000
Pediastrum tetras (Ehrenb.) Ralfs	60.000
Pediastrum duplex Meyen	60.000
Actinastrum hantzschii larger	50.000
Total count of Chlorophyceae	930.000
Cyanophyceae	
Merismopedia elegans Braum	60.000
Merismopedia glauca (Ehrenb) Negeler (1)	80.000
Merismopedia minima Beck	25.000
Merismopedia tenuissima Lemmermann	50.000
Microcystis incerta Lemm.	75.000
Chrococcus limneticus Lemmermann	70.000
Chrococcus dispersus (Keissl) Lemmmermann	65.000
Anabaenopsis circularis (G.S. West) Wol & Miller	20.000
Spirulina major	11.000
Total count of Cyanophycea	456.000
Total count of phyt. at st. (7)	3.531.000

Station 8 (Abou Amer)				
C hlorophyceae				
Scenedesmus quadricauda (Turp) Breb	400.000			
Scenedesmus accuminatus (Lagerh) chodat	150.000			
Scenedesmus bijugatus (Turp.) Kuetz	60.000			
Chlorella nulgaris Beij	50.000			
Pediastrum boryanum (Turp) Menegh	20.000			
Chlorococcum humicola (Nag)	55.000			
Scenedesmus dimorphus (Turpin) kutz	35.000			
Ankistrodemus falcatus var spirilliformis	25.000			
Cosmarium galeatum G.S. west W.& S. West	10.000			
Coelastrum sp.	5.000			
Total count of Chlorophyceae	810.0000			
Cyanophyceae	•			
Merismophedia elegans Braum	60.000			
Merismopedia glauca (Ehrenb) Nagelei	50.000			
Merismopedia minima Beck	20.000			
Merismopedia tenuissima lemmerman	40.000			
Microcystis incerta lemm	25.000			
Microcystis aerugimosa kutz	30.000			
Chrococcus disperses (Keissl) Lemmermann	55.000			
Chrococcus limnetica Lemmermann	60.000			
Chrococcus turgidus (kutz) Naegreli	30.000			
Oscillatoria limentica Lemm.	8.000			
Total count of Cyanophyceae	378.000			
Bacillariophyceae				
Cocconeis placentula Her. ++	35.000			
Cyclotella kutzingiana thwait ++	50.000			
Cyclotella meneghiniana kutz +++	65.000			
Total count of Bacillariophyceae	150.000			
Euglenophyceae	Not detected			
Total count of phyt. at st. (8)	1.338.000			

ملخص البحث

رصد بيئي لتلوث المياه والزيادة المفرطة للخصوبة بإستخدام الهائمات النباتية كمؤشرات حيوية للتلوث في بحيرة البرلس

فتحى توفيق طايل محمود أحمد عبدالمنعم عبد العزيز محمد رشاد رضوان أمال محمد حسين مرسى

عفيفي ابراهيم بسيوني

قسم التلوث البحري ، المعهد القومي لعلوم البحار والمصايد، الاسكندرية ، مصر

تعتبر بحيرة البرلس واحدة من أهم البحيرات الشمالية من حيث الانتاجية، وهي ثاني أكبر البحيرات الشمالية من حيث المساحة، وهي الان تواجه إجهاد بيئي شديد بسبب ما يلقى بها من ملوثات من خلال مصارف مختلفة تلقي بمخلفاتها داخل البحيرة بدون معالجة. وقد أختير لهذه الدراسة ثمانية محطات تم جمع العينات منها لتقييم مستويات التلوث والزيادة المفرطة للخصوبة وذلك باستخدام بعض أنواع الهائمات النباتية كمؤشرات حيوية لتواجد الملوثات في المناطق المختلفة من خلال المحطات المختارة.

وقد توصلنا من خلال دراسة مجتمع الهائمات النباتية أن متوسط أعداد الأجناس المختلفة الممثلة للهائمات النباتية في البحيرة 1,406,000 وحدة في اللتر تنتمي إلى أربعة طوائف وهي:

Euglenophyceae, Bacillariophyceae, Chlorophyceae, and Cyanophyceae

وقد تبين أن جنسي Eugleno spp., Phacusapp. هما الأكثر سيادة في مناطق التلوث وأمام المصارف بالنسبة لطائفة Euglenophyceae بينما كان جنسي Euglenophyceae spp., Nitzschia ssp. هما الأكثر سيادة بالنسبة لطائفة Bacillariophyceae في مناطق التلوث وأمام المصارف. وقد تبين أن جنس Scenedesmus spp. Aycrocystis spp. كان الأكثر سيادة في مناطق التلوث بالنسبة لطائفة Chlorophyceae بينما كان جنسي Cyanophyceae الأكثر تواجدا في مناطق التلوث بالنسبة لطائفة وضوحا كمؤشرات حيوية للتلوث العضوي في البحيرة خاصة أمام مصارف 2، 3 و 7 مع زيادة الأملاح المغذية (الأمونيا) والمواد العضوية وهذا أدى بطبيعة الحال إلى زيادة مفرطة للخصوبة كمصدر غير مباشر للتلوث.

Journal of Environmental Sciences

JOESE 5

Monitoring of Water Pollution and Eutrophication Using Phytoplankton as Bio-indicator in Burullus Lake, Egypt

Abdel-Aziz M. Radwan*, Fathy T. Tayel, Amal M.H. Morsy, Mahmoud A. Abdelmoneim, and Afifi I. Basiony

Marine Pollution Department, National Institute of Oceanography and Fisheries, Alexandria, Egypt

Reprint

Volume 47, Number 1-2: 63-74 (2018)